SAXON MATH

Lesson 27 • Multiples • Least Common Multiple

Equivalent Division Problems

Power Up

- Facts
- Mental Math
- Problem Solving

New Concepts

- Examples
- Practice Set

Written Practice

Facts Write the word or words to complete each definition.			
The distance around a circle is its	Every point on a circle is the same distance from its	The distance across a circle through its center is its	The distance from a circle to its center is its
circumference	center	diameter	radius
Two or more circles with the same center are	A segment between two points on a circle is a	Part of a circumference is an	Part of a circle bounded by an arc and two radii is a
concentric circles	chord	arc	sector
Half a circle is a	An angle whose vertex is the center of a circle is a	An angle whose vertex is on the circle whose sides include chords is an	A polygon whose vertices are on the circle and whose edges are within the circle is an
semicircle	central angle	inscribed angle	inscribed polygon

Lesson 27

SAXON MATH

Written Practice

- **1.** 11,123 + 7416 + 8449 = *P*; 26,988
- **2.** $6 \cdot 12 = I$; 72 inches
- 3. \$0.15 per egg; Some equivalent division problems: $$0.90 \div 6 = $0.15 \$0.60 \div 4 = $0.15 \$0.45 \div 3 = $0.15 \$0.30 \div 2 = 0.15
- 4. C
- **5.** a. 267 students
 - b. 445 students
- 6. a. 9 in.
 - b. 54 in.²
- **7.** 225
- 8. 3500

- **9.** a. $\frac{6}{25}$
 - b. $\frac{1}{5}$
- **10.** a. 70°F
 - b. 110°F
 - c. We needed to know the freezing point (32°F) and boiling point (212°F) of water.

SAXON MATH

Written Practice

continued

11. a.
$$\frac{15}{36}$$

a.
$$\frac{15}{36}$$
 b. $\frac{6}{36}$

c.
$$\frac{28}{36}$$

12. a.
$$2^6 \cdot 3^2$$

$$\begin{array}{ccc}
 & b. & 24 \\
13. & \frac{36}{6} \times \frac{48}{7} = 40
\end{array}$$

b.
$$\overline{AB}$$
 (or \overline{BA}) and \overline{ED} (or \overline{DE})

15. a.
$$\frac{1}{2}$$
 b. $\frac{1}{2}$ c. $\frac{1}{2}$

19.
$$3\frac{3}{4}$$

21.
$$8\frac{2}{5}$$

24.
$$1\frac{3}{4}$$

25.
$$\frac{3}{8}$$

Main Menu

SAXONMATH

Written Practice

continued

- 26. $\frac{2}{3}$
- **27.** 9 inches
- 28. 75¢
- **29.** a. 20 in.
 - b. 16 in.²
- **30.** a. \overline{CB} or \overline{BC}
 - b. \overline{AB} or \overline{BA}
 - C. $\angle AMC$ or $\angle CMA$
 - d. $\angle ABC$ (or $\angle CBA$, $\angle ABM$, or $\angle MBA$) and $\angle BAM$ (or $\angle MAB$)
 - **e.** \overline{MA} (or \overline{AM}) and \overline{MB} (or \overline{BM})

